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In this paper, hypersonic flow of a viscous, heat-conducting gas over a 
thin body is investigated for the case in which the boundary layer 
thickness is comparable to. or even greater than, the thickness of the 

body. In the terminology of [ll, this corresponds to the regime of 

moderate or strong interaction of the inviscid flow with the boundary 

layer. 

From an analysis of the equations of Navier-Stokes, the equations 
and boundary conditions for the case of three-dimensional flow over a 

pointed body are developed to the same order of accuracy A as the bound- 

ary layer equations for plane and axisymmetric flows. Notwithstanding 

that the relative change of pressure across the region where viscous 

forces are important is of order A, it turns out to be an essential 

peculiarity of the flow investigated that this transverse change must 

be taken into account, in contrast to the plane and axisymmetric prob- 

lems. 

Plane and axisymmetric hypersonic flows [2-41 over a slender body 

may be divided fairly definitely into an inviscid flow and a boundary 

layer; similarly, a three-dimensional flow can be divided into a viscous 

and an inviscid flow. 

Since in the viscous flow region the pressure depends mainly only on 

the coordinate x along the flow direction, the inviscid flow will be 

axisymmetric, to accuracy A. The proof is similar to that given in [51. 

From the fact that the inviscid flow is nearly axisymmetric. it follows 
that the ratio of the lift on the body in the case considered to the 

lift in inviscid flow is equal to zero to order 8. i.e. to the accuracy 

being considered. 

Also given in the paper is a similarity solution of the system of 
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equations derived for three-dimensional flow; this is a generalization 
of the well-known exact solution c61 of the equations of the axisym- 
metric boundary layer with interaction. The asymptotic solution of the 
WUationS of self-similar motion near the outer boundary of the region 
of viscous flow is obtained, which gives the possibility of verifying 

the correctness of the problem as set up. In conclusion the case of 

flow over a body of revolution is investigated for angle of attack much 

smaller than the body thickness (ratio), for which linearization with 

respect to the axisymmetric flow becomes possible. In Sections 1 to 3 

the flow over a pointed body is investigated in detail, and in Section 4 

the case of a body with small bluntness is investigated. 

1. Hypersonic flow of a viscous, heat-conducting gas over a thin 

body of arbitrary cross-section (all transverse dimensions much smaller 

than the length) will be investigated; in particular, bodies of revolu- 

tion at angle of attack. A cylindrical coordinate system x, r and o will 

be used, where the x-axis is parallel to the velocity vector U, of the 
undisturbed stream and goes through the foremost point of the body, r is 

the radius-vector, o the polar angle, and the coordinates x and r are 

expressed in units of the body length L. It will be assumed that the 

equation of the surface of the body has the form r = -rRb(x, o), where 

R, - 1 is a given function, T << 1 (in the specific case of flow over a 

thin body of revolution at small angle of attack, the body thickness 

ratio and the angle of attack have the same order of magnitude, T). 

The following notation is introduced: uUoo, VU, and wrl, are, respec- 

tively, the axial (along x), radial (along r) and circumferential com- 

ponents of velocity, ppco is the density (p,,, is the density of the on- 

coming flow), ppmU,2 is the pressure, Hum2 is the total enthalpy and 

ppO is the coefficient of viscosity (cl, is the coefficient of viscosity 

corresponding to the total temperature of the oncoming flow). It is 

assumed that the gas is perfect, having a constant value of the 

adiabatic index K. The equations of momentum and the equations of con- 

tinuity, energy and state are written, respectively, in the form 

--- 
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(1.4) 

P= 

Here, R, is the Reynolds number, evaluated at the total temperature 

of the undisturbed flow. 

The equation of 

the boundary layer 

6 << 1, Rg - 1. It 

sipative processes 

the surface which separates the inviscid flow and 

will be represented in the form r = 6RE(x, w), where 

is assumed that the width of the region 6 where dis- 

are important is of the same order* or greater than 

the body thickness, 6 2-r (with the condition A$,6 al) ; i.e. the regime 

is one of moderate or strong interaction of the inviscid flow with the 

boundary layer [II . 

Due to the low density in the region of viscous flow, it may be 

shown that the inviscid flow is over a body whose surface coincides with 

Rs. From the small perturbation theory of hypersonic flow [IIt it 
follows that the thickness of the perturbed region of the inviscid flow 

l For the regime 6 = ‘T, in a specific case of flow over a body of 

revolution, fulfillment of this condition for zero angle of attack 
does not ensure that the given theory is valid when there is angle 

of attack a * T. It is necessary that, for angle of attack, the con- 

dition 6 Q T be fulfilled in all meridional planes. 
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is also of order 6. From this, we find that for the independent vari- 
ables throughout the perturbed region of the flow: X% 1, r "* 6 and 
w * 1. Ihe velocity component u along the x-axis is everywhere of order 
unity. Using these estimates and equating, in order of magnitude, the 
second and third terms of the continuity equation (1,4), we find for 
the other two velocity components, v-6 and w * 6, everywhere in the 
perturbed region, 

From the properties of inviscid, hypersonic flow, we obtain the esti- 
mate p h 6' for the pressure. As is well known [3,4f, the enthalpy in 
the boundary layer at hypersonic speeds, h 2 H - u2/2, is of the same 
order as the total enthafpy, even with strong cooling, i.e. h * l/2 
(from this it follows that n Q 1). Using these estimates for the pres- 
sure and enthalpy, we obtain, from the equation of state (1.6), p*62fe, 
where E = (K - l),&!~. We require that the error of the theory be A = 
@/a CC 1. Equating, in order of magnitude, one of the convective terms 
(they are all of the same order) and one of the larger terms in equation 
(l,l), taking into account the estimates obtained above (u *I, 1, x w 1, 

p"S2faz P_ I), we have, for the region of viscous flow 

From equations (1.2) and (1,3) we find that the co~on~nts of the 
pressure gradient in the radial and circumferential directions are of 
the same order of magnitude* From this is obtained an estimate for the 
change of pressure Ap between any two points in the plane x = const 
lying in the region of viscous flow (the distance between these points 
is evidently of order not greater than 6) 

From (1.8) it follows that A~/~ * S4/a6' - S'/E = A, i.e. within the 
error A, the pressure may be taken to be dependent only on X. 

Gtnsequently, the inviscid flow must be axisymnetric to the same 

accuracy, since in the viscous region there can be no significant 
changes of pressure in the circumferential direction. 

2. In the development of the initial equations and in writing the 
boundary conditions, we shall not make use of the smallness of the 
quantity E. We shall define 6 by the equality 6 = R,-'i4. We shall re- 
present the independent variables and the functions to be determined in 
the viscous flow region in the form 
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2= x0, F = dFo, 0 =oo, u = up (50, ‘-0, coo), V = 6% (&c Fo,oo) 
w = 6Wo (% Fo, coo), P = 6= PO (zo) + a4p, (%I, ro, oo) 
P = d2Po (50, Fo, 00)~ H = Ho (X0, Fo, coo), 6 = R;11’ (2.1) 

where quantities with subscripts 0 and 1 are of order unity. 

The pressure is represented as the sum of two components, each of 

which enters into the equations, as may be seen from what follows. The 

outer boundary of the viscous flow region, whose equation is 

I- = 6R& a), is taken as the boundary of the effective body for the 

inviscid flow. Within an error of order E2, the inviscid flow must be 

axisymmetric. Therefore, the equations of the surface dividing the 

viscous and inviscid flows may be 

r = 6Rs (5) + d3Rr (GO) 

We shall neglect the bluntness 

represented in the form 

or F. = Rs (x0) + o (d2) (2.2) 

of the effective body (2.2). To the 

hypersonic flow over the effective body (2.2) with thickness of order 6 

we may apply the well-known analogy with nonstationary flow [lI, which 

is valid up to error S2. Within this error, it is evidently possible to 

set the quantity ww E3 in the equations of inviscid flow equal to zero. 

IJsing the order of magnitude estimates for inviscid flow over a slender 

body [ll, we have 

u = 1 + 0 (d2), V = 6V, (X0, To), w = 0 (63) z 0 

P = d2 PO (x07 fo), P = PO (50, TO), H = '12 (2.3) 

where quantities with subscript 0 are of order unity, and the independ- 

ent variables x, P and o transform according to equations (2.1). 'Ihe 

equation of the shock wave to the accuracy adopted is r = 6R,(x) or 

r0 = Rs(xo). 

After going over to variables with subscript 0, which will be omitted 

for brevity, in accordance with equation (2.3), the equations of in- 

viscid axisynnetric flow can be written in the form 

g+vg+;+o, +.L+a+o, ;f+v$ =0 (2.4) 

The boundary conditions at the shock wave r = Rs(x) take the form 

(a prime denotes differentiation with respect to X) 

(2.5) 
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while on the surface of the effective body r = Re(x) the tangency condi- 

tion is applied: ZJ = Q'(z). 

Dropping terms in the viscous flow equations (1.1) to (1.6) which 

are of order 6' compared to the remaining ones, we have, in the new 

variables (the subscript 0 is omitted for brevity) 

X-f 
P= y-- Pk p=fk ($), h&G-$, h,= + (2.W 

For the case of axisymnetric flow, for which w = 0 and a/% = 0, 

equation (2.6), in which the pressure is to be taken to be dependent 

only on x within the accuracy adopted, and equations (2.9), (2.10) and 

(2.11) form a closed system of boundary layer equations in which trans- 

verse curvature is taken into account. Once these equations are solved, 

the change of pressure pr across the boundary layer may be found from 

equation (2.7). Equation (2.8) is satisfied identically. In the absence 

of axial symmetry, equations (2.7) and (2.8) are solved together with 

the others. 

On the body, whose equation is r0 = (-r/&)Rb (xo, G+,), the usual con- 

ditions of no-slip and equality of gas temperature and wall temperature 

are satisfied (or else the condition for heat flow into the wall) 
(2.12) 

u = 0, v = 0,H = h,(. t x,0)( or d_T-i/dP-=Nb(2,0) for r= ;Xb(z,w) 
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Here hb(x, o) is the enthalpy in terms of Um2, corresponding to the 
given t~perature distribution on the body surface (correspondingly, 
Nb(x, w) is the given distribution of heat flux on the surface Rb(X, o) 
and a/&z is the derivative with respect to the normal to the body sur- 
face). 

On the boundary between the viscous and inviscid flows, we have, 
taking into account the estimates (2.3), and to the accuracy adopted 

u = 1, v = Rs’ (z), w = 0, H = Ii, for r = &, (z) (2.13) 

Inside the viscous flow region h Q 1, while outside it h Q 6’; there- 
for the error introduced by taking h = 0 at the boundary does not exceed 
that allowable. Condition h = 0 at the edge of the boundary layer was 
investigated in [2-41 for axisymmetric flows. Condition (2.13) for the 
radial velocity component v follows from the requirement that there be 
no flux across the surface RE(x). 

Besides (2.13), we require that, in approaching the surface r = Rs(x) 
from the viscous flow side, the viscous stresses and heat fluxes 
approach zero 

We write these in the form of limiting expressions because on the 
actual surface F = R,(x) the r-derivatives of the functions to be deter- 
mined go to infinity (see Section 5). 

The method of solution of the problem is as follows: assigning the 
function r = R&(X), and taking into account the tangency condition and 
the conditions at the shock wave (2.5). we solve the inviscid problem 
(2.4), thus determining the pressure p on the surface r = Rs(x) as a 
functional of Rs(x). (In the specific case where Newton’s formula may 
be used, we have simply p = (Rs’)~.) Putting the value of p thus ob- 
tained in equation (2.6) and solving the system (2.6) to (2.11) with 
boundary conditions (2.12) to (2.14). we determine the viscous flow and 
find Rg(z) _ In accordance with the similarity laws for hypersonic viscous 
flow r3.41, making use of a convenient form of writing them [81, we find 
that the solution depends on four dimensionless parameters, KI = h&,6, 
K = v2/s2 = _r2&‘, 

(:* Nb(& 0). 

e, K and CT, and two functions, R&(X, oj and kb(x, 0) 

For PA, - m the solution ceases to be dependent on Xl. 

The system of equations (2.6) to (2.10) is of second order with re- 
spect to u, V, XV and H and of first order with respect to p1 (the 
density p is expressed in terms of H, in accordance with equation (2.11)). 
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In addition, the solution depends on one unknown function R&(X), through 
p and the boundary conditions. Thus, the solution of the resulting 
system of equations depends in all on 10 arbitrary functions. One of 
these functions, dependent on X, enters into the solution for p1 as a 
parameter, since the quantity p1 is differentiated with respect to r and 
GI in equations (2.7) and (2.8). and no boundary conditions are applied 
to pl. This function, having the same order of magnitude as pl, may, in 
principle, be determined from the solution in the following approxima- 
tion. Its presence does not show up in any way in the solution for the 
remaining flow parameters - a, V, w, p, p and R. This function also does 
not influence the quantities determined from the solution for the drag 
force (due to the smallness of that force) and for the lift (due to the 
fact that it adds an axisymmetric increment to pl). To solve the remain- 
ing nine arbitrary functions there are the boundary conditions (2.12). 

(2.13) and (2.14), of which there are just enough for a full solution 

of the problem, as will be shown in Section 5 for the example of a 

similarity solution. 

3. To determine the order of magnitude of the forces acting on the 

body, we enclose the body in a control surface having the form of a 

cylinder with generators parallel to the velocity vector of undisturbed 

flow, U, and by butt-ended planes perpendicular to U,. The rear butt- 
ended plane is separated from the nose of the body by a distance equal 

to the body length L. Instead of a cylindrical coordinate system, we 
introduce Cartesian coordinates Lx, Ly and Lz, where the x-axis is in 

the flow direction. Let uxQ,, uyf&, and uzUa be the corresponding 
velocity components, and the remaining notation as in Section 1. 

For the velocity components, we have uy w 6, uz * 6 everywhere, ux = 

1 t O(S’) in the inviscid flow and uy Q 1 in the viscous flow. 

writing the momeut~ equation of a viscous gas in divergence form 

and applying Ostrogradski’s formula to the volume of gas enclosed be- 
tween the control surface and the body surface, we obtain for the forces 

X, Y and 2 acting in the directions of the coordinate axes the expres- 

sions 

(3.1) 

Here, the integrals are taken over the area S of the rear butt-ended 

plane, between the body and the shock wave; 7xx T_, and ~~~ are the 
components of the viscous stress tensor expressed in units of paJUoD2. 
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Each of the forces X, Y and Z represents the sum of pressure and 

friction forces. We shall denote by S, and Se+ the areas of the cross- 

section corresponding to inviscid and viscous flow, respectively 

(evidently S = S* t S,,). Applying the equation of mass flux to the butt 

ended planes of the control surface, we have 

Sh + s,, = 11 wxds + 1 i wads 
S. s.. 

(3.2) 

Using the estimates made in Section 1, we have, with S Q Szl * E2 
* 

s, -l-s,, = ss 
S* 

(3.3) 

Using equation (3.3)) we estimate part of the integral in the ex- 
pression for X 

CS( 1 - pux2) dS = S, + S,, - ss pux2 dS - 1s pux2dS = S* -l-S,* - 
‘s 

Estimating the remaining quantities, we obtain 

1 64 
-&x - - L 

--!- < a2, p -v, 
Q,um2 =R,-E’ A%&,“+ 

p 

For evaluating the lift Y, we estimate the integral 

ss pu,v,dS = \i pu,v,dS + jj pu,v,dS -f a2 + f d3 -; (3.6) 
8 * 

The integral over S* may be broken into two, over the half-ring z>O 
and over the half-ring z < 0. Although each of these integrals is of 
order g3, being of opposite sign their sum is of order s5/~, due to the 
fact that the inviscid flow is axisynvnetric up to error S2/.a. The inte- 

gral over S is estimated in the usual way in terms of the magnitudes 
of the quanc?ties in the integrand. Estimating Tag, we have, for Y and Z 

(3.7) 

In the case of flow over a thin body of thickness T at angle of 

attack a * T, when the thickness of the viscous flow region is small 
compared to the body thickness, the pressure change in the circum- 
ferential direction changes its order of magnitude. Here we have, for Y 

and Z 
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If we take F + T, then, with an error of order S'/E, it is possible 

to neglect the left and side force in comparison to the corresponding 

quantities in the absence of viscous influence, i.e. to take Y = Z = 0, 

If the estimate (3.8) is insufficient, and it is necessary to deter- 

mine Y and Z for S&T, this can be done after solving the problem 

formulated in Sections 1 and 2. In evaluating X, Y and Z, it is neces- 

sary to take into account not only the influence of the pressure forces 

(the lift and side force are produced by the increment of pressure Ap, 

dependent on r and w and being of order g4/s, in accordance with (1.8)), 

but also of the friction forces, since here those forces are of the 
same order. 

4. In the case of flow over a slightly blunted cone (td is the di- 

ameter of the bluntness) a layer of low density gas is developed (the 

entropy layer). If this layer can be assumed to be viscous, then the 

above theory is valid without any changes. 

entr:,py layer, assuming that its thickness 

v&sar, we obtain from the equations of 

mate for v 

For the case of.an inviscid 

vl, satisfies the inequality 

mass flux and entropy an esti- 

CP - PUsV2, P p;x --- _v; (* -Tar u, - 

In [51, where this estimate was obtained, E was taken to be of order 

E 5 1. The change in pressure across the entropy layer kl is bp * 
v'/"/s, For the boundary layer, Ap + S2/sa Thus, across the whole region 

occupied by the boundary and entropy layers, whose thickness is 

(4.2) 

the pressure is constant, with an error not exceeding w 2/K/~. Within the 

same error, the lift on the body at angle of attack agv + 6 is equal 

to zero. 

5. Let us assume that Mm = m, and the temperature of the surface of 
the body is constant or the body is insulated. For the case where the 

body surface (2.12) is given in the form R~(x, o) = Q,(w)x~~*, the equa- 

tions derived in Section 2 permit a similarity solution, which is a 

generalization of the solution [61 for axisymmetric flow (for Q, = 

const). We shall use the variables (2.1), dropping the subscript 0. We 
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look for the equation of the outer boundary of the viscous flow region 

in the form R,(x) = ,~gn~‘~, where T-Q is a constant quantity which is to 
be determined. ‘Ihe equations (2.4) of inviscid axisymmetric flow with 
boundary conditions (2.5) have a similarity solution [91, for which the 
pressure p on the surface Rg = qsx3/’ is written 

From the calculations in [lo], q~ = 1.274 and c = 0.51 for K = 1.4. 

Equation (5.1) gives a functional relation between p and Rg. We look for 
the remaining functions to be determined in equations (2.6) to (2.11) 
in the form 

ZJ = u h,o), vu = x-“V (q,o), reJ = x-“4V (q,w) 

P = x-“+i (q,o), If = fI (q,o), Pl = &lx, q -; r / x3/r (5.2) 

Equations (2.6) to (2.11) take the following form: 

qs - 2-(Y.;VRh p, = f.1 ; , i ! 0 
h-R+, h, = +. (5.8) 

The boundary conditions on the body (2.12) and at the edge of the 
viscous layer (2.13) take, respectively, the form 
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u= 0, v = 0, w = 0, H = ha for q= (r/h)xb (0) t5-9) 
u = 1, V = a/&, w = 0, H = V2 

limP’$= limp::= limp’:= limp!?&=0 for q+rlb (5.40) 

Let us investigate the asymptotic behavior of the solution in the 

vicinity of the outer boundary of the viscous flow region, restricting 

ourselves, for simplicity, to the case where the Prandtl number u = 1 

and the coefficient of viscosity depends linearly on the enthalpy, p = 

2H - I?. On the basis of (5.10), in the vicinity rl = TQ it is possible 

to introduce small quantities (indicated by the subscript *) which 

approach zero for q, - 0 

rl = % + rl*9 H = II2 -j- H, 

u=1+l_J,, v = 3/4qs + v,, w = w, (5.11) 

Here, R - m for q, - 0. Let us assume (it will be verified later) 

that all quantities with subscript * are of the same order of magnitude 

O(rl*) 9 so that the derivatives of these quantities with respect to q, 

are of order unity. Diff erentiation with respect to o does not change 

the order of the quantity. From equation (5.8) it follows that R +., q 
taking into account the linearity of u(q), we obtain u c\r q,. Putting* 

-l; 

expression (5.11) into equations (5.3) to (5.8) and neglecting quanti- 

ties of order q, in comparison with unity, we find that the system of 

equations separates into two groups, which can be solved successively. 

We introduce the notation 

31, u* 
T/, = R (V, - + - 4 (5.12) 

We represent equations (5.3), (5.6), (5.7) and (5.8) in the form 

cqs2 = R (H, - U,) (x - 1) I x, I-L = 2 (H, - W,) (5.13) 

We go over from the variables ?* and o to the variables 5 and o, 

where the Dorodnitsyn variable 5 1s given by 

5 = 1 ROT*, rlr1 = ~,lb) (5.14) 

n,1 

Here, the integral is taken at a constant value of o, and nWl(w) is 
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respect to 0 

of (5.13) we 
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function. Equations (5.13) do not contain derivatives with 

and therefore integrate easily. From the second equation 

obtain 

K=-5Sr(0)=4 (5.15) 

The arbitrary function y(o) resulting from the integration may be 

taken equal to zero, taking note of (5.14), without any loss of general- 

ity; this results only in a change of the function q,l(o). 

Taking into account equations (5.12) to (5.X), the third equation 

of (5.13) and its solution are written as 

(5.16) 

Re have required that q, - 0, and, consequently, fi* - 0 for $ - m. 
It is not difficult to show that, if j remains finite for n - 0, then 

the condition of zero heat ffux and viscous stress at the e ge of the (f 

viscous flow region is violated. Thus, for q << 1, we have < >> 1, 

which makes it valid to use asymptotic expan*sions in (5.16) and below. 

The first equation of (5.13) is written as 

h %$+1;e$+e(H*-U*)=O (dg (5.17) 

where He is given by (5.16). The particular solution of equation (5.17) 
is evidently U = H . We look for a solution of the homogeneous equa- 

tion, which de$ends*on an arbitrary function fz(o), in the form of a 

generalized power series in powers of c-', multiplied by exp(_52/2A). 

The result is (noting that U, - 0 for 5 - m) 

u 
* 

= fl(d exp (-- P /W 
5 (1-b+ . ..) f (5.18) 

+ f-3 (0) exp (-- 332h) 
* tie 

1 _ 3, iI+ 4 (2 + 9) 

5 [ 252 +..*I 

Using the fourth of equations (5.13), we find for the density 

R= A 
Z(H,- U,) = - 

AC ‘+e exp (f32h) 

2h (@) 

* + h (1 + 8) (2 + ‘8) 

z? 
+ *. .] (5.19) 

From equation (5.14) we have 

(5.20) 
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Since < goes to infinity for q, - 0, the solution does not depend on 

the arbitrary Ptinction q*l(o) in equation (5.13). 

From equations (5.12), (5.15), (5.18), (5.19) and (5.20), we have 

37lsf1 (a) 
T/‘* = 45 exp(-$)(l-++...)+ (5.21) 

+ 
2/2(o) axp (-~52/2~) 3h rls 

1+5- 
h (&3 + 3E + 0.5) 

X8 T 
+ ..*I 

All the functions of w are periodic with period 2s. Equations (5.4) 

and (5.5), after dropping quantities of order q compared to unity, can * 
be written in the new variables 

The derivative of P, with respect to o with q = const in equation 

(5.5) has been replaced in the second equation of (5.22) by the deriva- 

tive with respect to o with j = const. 

Integrating the first equation of (5.22) with respect to 5, taking 

(5.15) into account, we have 

'Ihe arbitrary function of o which results from the integration in 

(5.23) can be conveniently written in the form of a sum of an integral 

of another arbitrary function f3(a) and a certain constant C. 'lhe condi- 

tion of closure of the body contour, taking account of the periodicity 

of the functions fl(o) and f*(a), gives 

2rr 

P, (LO) = PI (I;, 2%) or s of3(0)dO=0 
(5.24) 

We differentiate through equation (5.20) with respect to o, taking 

n* = const, 
finally obtaining 

ac ( 1 &;;n 
= hdfz 

if2 (0) do L l-y-6) + . ..I (5.25) 

Using equations (5.15), (5.19), (5.23) and (5.25) and neglecting 

terms of order q* compared to unity, we transform the second equation 

of (5.22) to the form 

h 3% dW, W 
q” +5 ag - * = 

3 dfz 
2 -2trawexp -&X 

8L ( 1 
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x 1 _ h. (2 + E) (3 + 8) 

25” 
+ . ..]- 

I 

1 _ h(l+$Z+E) + .,.I (5.26) 

The solution of this equation can be written as 

w*=- 3 dfz exp (~72h) [l_ 
4 (1 + 2~) do 

h (2 +;g3 + 8) + . , *] + 

+ 
4f3 (0) f2 (0) exp (- 5’/2h 1 1 _ h (1 + E) (2 + E) (1 - 2E) (3 - 2E) 

h ‘Q (I - 28) G*+E 2 (1 + 2E) (3 + 2E) 5” 
+ . ..I+ 

+fYexII(- &)(I+&+.*.) (5.27) 

The asymptotic solution, (5.16), (5.18), (5.19), (5.20), (5.21), 

(5.23) and (5.27), of the original equations depends on four functions, 

@A f&A f&) and fq(a) and one constant quantity, TQ (the con- 

stant C in equation (5.23) f or P, evidently has no effect on the result. 

In principle, this quantity can be determined from a higher order 

approximation of the solution. In other words, the given solution makes 

it possible to find P, correctly up to an additive constant). It is 

essential that f3(a) satisfy condition (5.24). The dependence of the 

solution on one constant quantity, TQ, and a periodic function f3(a), 

whose integral over a period is equal to zero, is equivalent to the de- 

pendence on a certain arbitrary function on which no conditions are im- 

posed. The remaining functions fl(ti), f2(a) and fq(o) will be arbitrary. 

Thus, the asymptotic solution depends on four arbitrary functions. On 

the body there are just this many boundary conditions (5.9). 

As follows from the solution, all the functions sought, except the 
density, behave near n = qE like 5" exp(-c2/2h) t const, which with 

(5.20) can be rewritten as (TQ - ~))[ln(r~ - q)la + const, where a is 
some number. Thus, for n = ns, the derivatives of the quantities to be 

determined have logarithmic singularities. The density R * (TQ - ,1)-l 

ln(qj - q) goes to infinity for n = ns. 

Once the asymptotic solution is obtained, it can be refined. 'Ihe 

condition for which all quantities with subscript * are of order n, 

means that these quantities, including n,, may be represented in the 

form of a product of exp( -c2/2h) with a certain generalized power 

series in powers of 5-l. 

In obtaining the asymptotic solution, the quantity T),~ was neglected 

in comparison with quantities of order '1,. If the omitted terms of order 

n* 2 'c, exp(-G2/2h), d t 
e ermined from the first approximation, are now 



1194 M.D. Ladyrhenskii 

placed in the right-hand side of each of the simplified equations, for 

example, equation fS.l?), then it is possible to obtain a correction to 

the solution which is proportional to the product of exp( -<'/2A) with 
a certain generalized power series in powers of 5-l. 

Repeating this procedure, we find that the asymptotic solution for 
u* has the following structure: 

a = a (k) (5.28) 

In fact, the asymptotic expansions for the remaining quantities with 

subscript * have the same form. The expansion for R begins with k = -2. 
In equation (5.28) the coefficients a,,(o) of the double series depend 

on the functions fl(o), f2(~), f3(a). f4Ca) and the constant 16, as may 

be easily shown. 

6. We investigate the case of flow over a thin body of revolution at 

small angle of attack a << T & 6. With this, it is possible to linear- 

ize around the solution of the corresponding axisyrnnetric flow. Instead 

of equations (2.11, we may write for the functions to be determined 

(6.4) 

5 = $0, r = 8ro, 0 = 00, 24 = u. (G ro) + ua (x0, ro, ao) 

u = Quo (zo, ~~‘0) + ua ho, ro, ho), w = WCC (50, To, %J) 

P = a2po (~0) -!- @Pp, cot ro> 4 P, (501 TO? 00) 

P = a2Po (50, 7.0) + P, (20, rev mo)r H = h2Ho (x0, ro) + H, (x0, To, 00) 

Quantities with subscript 0 and the quantity p1 in the expression 

for the pressure, being of order unity, correspond to the axisynnnetric 

flow. It is assumed that the angle a is so small that the perturbations 

with subscript a, which depend on the angle of attack, are much smaller 

than the basic quantities. The equation of the surface of the body, 

whose axis of symmetry makes a small angle a with the x-axis of a 

cylindrical coordinate system, is written in the form 

f = zBb (z) + R, (LX, 0) or r. = +Rt, (so) -+x0 cos o. (6.2) 

We reduce the boundary conditions (2.12) on the surface (6.2) to the 

body surface for a = 0. Taking into account that quantities with sub- 

script 0 satisfy those boundary conditions on the body surface for a=O, 

we have, for example, for u (neglecting products of small perturbations 

with subscript a) 
(6.3) 

u = u* + ua 25 1% + &I ++[&(u, + &,l~ [z&l + f&[&o ’ 
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where the square brackets indicate that the given quantity is taken on 
the body surface at Q = 0, 

The remaining boundary conditions are written similarly (the condi- 
tion for the enthalpy is taken in the form H = hb). Taking (6.2) into 
account, we obtain 

Equations (6.4) determine the orders of the quantities K~$ ucx and Hot 
and equations (2.6) to (2.11) the orders of the remaining quantities 
with subscript oi. In addition, as a result of the linearization and on 
account of (6.4), it is possible to find the dependence on G+,; per- 
turbations depending on angle of attack effects take the form 

where primed quantities are of order unity, In linearizing equations 
(2.6) to (2.11) an errur of order or/S is introduced, as may be easily 
seen. Equation (2.2) of the outer boundary of the viscous flow region 
takes the form 

Boundary conditions (2.13) on this surface assume a simple form, 
with an error a6 which is significantly smaller than the allowable error 

o/s 

The problem is solved in the following manner: first, u@, ~a, UJ@* pa, 
pa and N,, (it is not necessary to determine pz) are found from the usual 
equations for the a~s~etr~~ boundary layer, after which the perturba- 
tion quantities are found from the linearized equations (2.6) to (2.11) 
together with the boundary conditions (6.4) and (6.7). 

The author is grateful to V.S. Gslkin, M.N. Kogan, V.S. Nikolaev, 
V-V, Struminsky and V.V. Sychev for very useful discussions, 
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